Posted on

Solving Quadratics with Inequalities

Q:  Solve for x:  (x + 3)(x – 4) < 0

A:

Step 1:  Find the zeroes

Since the quadratic is already factored, this isn’t too tricky.  If it wasn’t factored, you’d have to factor first! (always make sure there is a 0 on one side of the equation / inequality before proceeding).

OK, so what are the zeroes?

x + 3 = 0 or x – 4 = 0

The zeroes are x = -3 or x = 4

So, draw a number line and plot the zeroes on the number line:

numberline

Now, you have to test each “interval” that is separated by the “zeroes”.  There are three intervals to test.

Interval 1:  The numbers to the left of -3  –> in interval notation this is (-infinity, -3)

Interval 2:  The numbers between -3 and 4  –> in interval notation this is (-3, 4)

Interval 3:  The numbers to the right of 4  –> in interval notation this is (4, infinity)

Step 2:  Test each interval

Pick any number on interval 1 and test it into the original inequality.  I’ll pick -5:

(x + 3)(x – 4) < 0

(-5 + 3)(-5 – 4) < 0

(-2)(-9) < 0

18 < 0      <—  this is false, so numbers on this interval [interval 1] are not part of the solution.

Pick any number on interval 2 and test it into the original inequality.  I’ll pick 0:

(x + 3)(x – 4) < 0

(0 + 3)(0 – 4) < 0

(3)(-4) < 0

-12 < 0      <—  this is true, so numbers on this interval [interval 2] are a part of the solution.

Pick any number on interval 3 and test it into the original inequality.  I’ll pick 5:

(x + 3)(x – 4) < 0

(5 + 3)(5 – 4) < 0

(8)(1) < 0

8 < 0      <—  this is false, so numbers on this interval [interval 3] are not part of the solution.

SO:  The only interval that “worked” was interval 2.  Therefore, the solution is all number between -3 and 4.

In interval notation, we write that like: (-3, 4)

In inequality notation, we write that like: -3 < x < 4

Leave a Reply